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Abstract— Recently, vision-based Advanced Driver Assist
Systems have gained broad interest. In this work, we investigate
free-space detection, for which we propose to employ a Fully
Convolutional Network (FCN). We show that this FCN can be
trained in a self-supervised manner and achieve similar results
compared to training on manually annotated data, thereby
reducing the need for large manually annotated training sets.
To this end, our self-supervised training relies on a stereo-vision
disparity system, to automatically generate (weak) training
labels for the color-based FCN. Additionally, our self-supervised
training facilitates online training of the FCN instead of offline.
Consequently, given that the applied FCN is relatively small,
the free-space analysis becomes highly adaptive to any traffic
scene that the vehicle encounters. We have validated our algo-
rithm using publicly available data and on a new challenging
benchmark dataset. Experiments show that the online training
boosts performance with 5% over offline training, both for Fmax
and AP .

I. INTRODUCTION

In recent years, much research has been dedicated to
developing vision-based Advanced Driver Assist Systems
(ADAS). These systems help drivers in controlling their
vehicle by, for instance, warning against lane departure,
hazardous obstacles in the vehicle path or a too short
distance to the preceding vehicle. As these systems evolve
with more advanced technology and higher robustness, they
are expected to increase traffic safety and comfort. A key
component of ADAS is free-space detection, which provides
information about the surrounding drivable space. In this
work, we employ a Fully Convolutional Network (FCN)
for this task and explore online training in a self-supervised
fashion, to increase the robustness of the free-space detection
system.

Neural nets with deep learning are becoming increasingly
successful and popular for image analysis. In the field of
Intelligent Vehicles, many of the recent state-of-the-art algo-
rithms rely on neural nets, mostly on Convolutional Neural
Nets (CNNs). They excel in a wide variety of ADAS appli-
cations, such as stereo disparity estimation, object detection
for cars and pedestrians and road estimation, as can be seen
in the corresponding KITTI evaluation tables1.

In literature, training a neural net typically requires many
data samples for proper convergence of the large amount
of parameters and proper generalization of the classifier.
Different strategies are adopted throughout the field to handle
this. For image recognition and object detection problems in
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natural environments, a common method is to start with a
net that is trained on a large and generic dataset and adapt
it to the task at hand [1][2].

Scene labeling, in contrast to scene or object recognition,
requires a per-pixel classification. Recently, Fully Convo-
lutional Networks (FCNs), have been employed for this
task [3]. An FCN is a Convolutional Neural Network without
any fully connected layers (they can be replaced by their
convolutional counterpart). This adaptation transforms the
net into a deep filter that preserves spatial information,
since it only consists of filtering layers that are invariant to
translation. FCNs have several attractive properties for scene
parsing. For example, FCNs have no constraints on the size
of their input data and execute inference efficiently in a single
pass per image, thereby avoiding analyzing sliding windows,
or, for instance, regions [4].

Even though weakly- or unsupervised training methods of
CNNs are improving, they are currently still outperformed
by fully supervised methods [2][5]. Together with the fact
that creating large amounts of pixel-accurate training labels
is inherently much work, we propose a middle-way in this
paper: self-supervised training. If training labels can be
generated automatically, the amount of supervised training
data available becomes practically unlimited. However, this
leads to a paradox, since it requires an algorithm that can
generate the labeling, which is exactly the issue that needs
to be solved. Therefore, we propose to rely on an algorithm
based on traditional (non-deep learning) computer vision
methods. This algorithm needs not to be perfect but at
least sufficiently good to generate weak training labels. The
goal is then that the FCN, trained with these weak labels,
outperforms the traditional algorithm.

For next-generation ADAS, stereo cameras and multi-
view cameras are an increasingly used sensor configuration.
Stereo cameras provide insight into the geometry of the
scene by means of the stereo disparity signal, which is
valuable information for free-space detection. A state-of-the-
art algorithm to distinguish free space and obstacles is the
Disparity Stixel World [6]. We will use this algorithm to
generate free-space masks and exploit these as weak training
labels, and we will rely on the generalization power of FCNs
to deal with the errors in the weak labeling. In essence, we
use a stixel-based disparity vision system to train a pixel-
accurate free-space segmentation system, based on an FCN,
and refer to this as self-supervised training.

As a further contribution, our proposed self-supervised
training is enhanced by combining it with the aforementioned
strategies of task-specific fine-tuning of neural nets. Since
traffic scenes come in a wide variety (urban versus rural,
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highway versus city-center), with varying imaging conditions
(good or bad weather, day or night), ADAS have to be
both flexible and robust. A potential strategy is to train
many different classifiers and to select the one that is most
relevant at the moment (e.g., based on time and geographical
location), or train a complex single classifier to handle all
cases. In contrast, we show in this paper that it is feasible
to fine-tune a relatively simple, single classifier in an online
fashion. This is obtained by using the same self-supervised
strategy as for offline learning, namely, based on generally
correct segmentation by the disparity Stixel World. This
results in automatically improved robustness of the free-
space detection, as the algorithm is adapted while driving.

Considering the overall approach, our work is also related
to [7], where automatically generated labels are exploited to
train a CNN for road detection, which is applied as a sliding-
window classifier. They also have an online component,
which analyzes a small rectangular area at the bottom of
the image (assumed road) and calculates a color transform
to boost the uniformity of road appearance. The results of
offline and online classifications are combined with Bayesian
fusion. Our proposed work differs in several key points.
Firstly, we do not need to assume that the bottom part of
a image is road in the online training step, which is often an
invalid assumption in stop-and-go traffic, since we exploit the
stereo disparity as an additional signal. Secondly, their offline
and online method is a hybrid combination of supervised and
hand-crafted features, whereas our method can be trained
and tuned in a fully end-to-end fashion, using a single FCN,
while avoiding an additional fusion step. Thirdly, we do not
require a sliding window in our inference step, since we use
an FCN and not a CNN.

A comprehensive version of this extended abstract is
available online2.

II. METHOD

A. Fully Convolutional Network (FCN)

The color-based segmentation algorithm used as a basis of
our work is an FCN [3]. For our experimentation, we have
relied on the CN24 framework as described in [8]. Provided
that the context (road detection) and data (images captured
from within a vehicle [9]) are comparable to our research, we
adopt their network architecture and their recommendations
about the optimal training strategy. The network consists of
several convolutional, max pooling and non-linear layers:
Conv (7× 7× 12); MaxP (2× 2); ReLU; Conv (5× 5× 6);
ReLU; Full (48×); ReLU; Full (192×) + spatial prior; ReLU;
Full (1×) + tanh. The fully connected layers are interpreted
and executed as convolutional layers by the CN24 library.

Note that our current work is not meant to offer an ex-
haustive test on optimizing the network architecture or hyper
parameters. Our results may be improved by investigating
that more properly, but the focus in this paper is to show
the feasibility of self-supervised training and the additional

2https://arxiv.org/abs/1604.02316
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Fig. 1. Schematic overview of our free-space detection method with online
self-supervised training.

benefits of our proposed online tuning in the context of free-
space segmentation.

B. Self-Supervised Training

Self-supervised training requires an algorithm that gen-
erates (weak) training labels. The training label generation
algorithm is chosen to be an independent algorithm, which
exploits an additional signal modality, namely stereo dispar-
ity. This disparity-based algorithm estimates masks of the
drivable surface. As these masks are not perfect, we say they
represent weak training labels. The reason to use a different
modality (disparity) as basis for the weak training labeling
than the modality (color) that is analyzed by the FCN, is
to increase the chance that the trained algorithm can correct
unavoidable errors in the weak labels, instead of stepping
into the same pitfalls in difficult situations.

Stereo disparity is an attractive modality, since it is compu-
tationally inexpensive and yet provides relevant information
in the context of free-space detection. We propose to analyze
the disparity signal with the disparity Stixel World algorithm.
This is a probabilistic framework that segments traffic scenes
into vertically stacked, rectangular patches that are labeled as
either ground or obstacle. These regions subsequently serve
as the weak labels for the corresponding color image in our
self-supervised training process.

The challenge is that the generated weak labels will
contain errors, as is visible in the second column of Figure 2,
potentially hampering the training process. We rely on the
generalization power of the FCN training process to deal with
these inconsistencies in the labeling, which we can validate
by comparing the results of our self-supervised training with
the results of training on manually annotated frames.

C. Online Training

For online training, we adopt the training strategies as
introduced in [10]. In that work, the stereo-disparity signal is
analyzed for several frames, and the resulting segmentation
labels are exploited to construct a color model of ground and
obstacle regions. The color model is exploited to segment
a new frame in the sequence with their color Stixel World
algorithm. Additional experiments over different color spaces
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showed that no single space is optimal for all frames [11].
In other words, their color representation can be potentially
improved by adapting it better to the imaging circumstances.
Building further upon that observation, we propose to apply
end-to-end learning in this work to exploit an FCN training
algorithm for finding the representation of the image that is
most relevant in the current situation.

A schematic overview of our experimental framework for
free-space detection is shown in Figure 1. We train an FCN
from scratch (with random initialization), or start with one
of the offline trained models and tune the entire model with
online data. By comparing these online strategies with results
from solely offline training, we show the importance and
added value of adapting the classifier online to the changing
environment. If this adaptation can be realized in a reliable
and realistic way, our free-space detection system improves
without putting extra effort and computational power into
training and executing a larger, more advanced FCN. By
limiting the complexity of our system, real-time execution
in a driving car becomes feasible in the near future.

III. DATA AND EXPERIMENTS

We utilize two publicly available datasets as the training
set for our offline training of the FCN (188 frames with man-
ual annotation and its 10 unlabeled preceding frames)[10].
For our test set, we employ newly annotated data3 that
was captured in a similar configuration. It consists of 265
hand-annotated frames (and 10 unlabeled preceding frames)
of urban and highway traffic scenes, both under good and
adverse imaging conditions. There is a large variety in
scenes, covering crowded city centers, small streets, large
road crossings, road-repair sites, highways, etc.

A. Experiment 1: Supervised versus Self-Supervised Training

To validate the feasibility of our self-supervised train-
ing method, we compare three FCNs that have an equal
architecture but are trained with different data. The first
model is trained offline on manually annotated labels, as a
reference result for offline, supervised training. The second
model is trained offline on the same frames but now using
automatically generated weak labels instead of the manual
version. This model serves as a demonstration of offline,
self-supervised training. Thirdly, we train a model in a self-
supervised fashion on all available frames in the dataset,
including frames for which no manual labels are provided.
This experiment tests the added value of training on addi-
tional data in our framework, which is realized efficiently
because of the initial choice of fully self-supervised training.

B. Experiment 2: Offline versus Online Training

We perform three key experiments to test the benefits of
online training for our FCN-based free-space detection and
compare this to the offline experiments of Section III-A.
Similar to Experiment 1, we train on different data while the
architecture of our FCN is kept identical. First, we train an
FCN from scratch (with random initialization) on the weakly

3available at http://www.willemsanberg.net.

labeled preceding frames of each test frame. Additionally,
we validate the benefits of online tuning. To this end, we
initialize the net of each training sequence with one of the
offline trained models (trained on either manual or self-
supervised labels). Note that the labels for the online training
itself are always self-supervised, since the preceding frames
of each sequence are not manually annotated.

Furthermore, we perform an experiment to show the power
and benefit of ’over-tuning’ for our framework. To this end,
we test the online trained FCNs on test frames of different
sequences than of the ones for which they were trained. By
doing so, we can investigate the extent to which the online
trained FCNs are tuned to their specific sequence. If the
FCNs are over-tuned, we expect them to perform well if
the training sequence and the test frame are aligned, but
simultaneously expect them to perform poorly when they
are misaligned. To validate this, we conduct three different
misalignment experiments: shift one training sequence ahead
or one back, and randomly permutate all training sequences.
Note that our data sequences are ordered in time, therefore,
there can still be correlation between training sequences and
test frames when shifting back or forth a single training
sequence. We reduce this correlation as much as possible
by randomly permutating all training sequences.

IV. RESULTS AND CONCLUSIONS

Figure 2 shows qualitative results of our experiments. In
general, the offline-trained FCN detects less false obstacles
than the Stixel World baseline. However, it misses the trailer
and part of the lamppost and it detects false obstacles on
some shadows. In contrast, our online training outperforms
both the Stixel World baseline and the offline methods. It
segments the scene with raindrops on the car windscreen
robustly and it classifies the trailer and shadows correctly.

We adopt the quantitative pixel metrics as employed
for the KITTI dataset: Fmax (an indication of the optimal
performance) and the Average Precision AP , which captures
the Precision score over the full range of Recall [9].

The trends of our quantitative results over the number of
training iterations are shown in Figure 3. The training con-
verges after 5,000 to 10,000 iterations. For offline learning,
the results of supervised (manual labels) and self-supervised
(disparity-based labels) are nearly identical. This confirms
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Fig. 3. Fmax and AP convergence over training iterations.
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Fig. 2. Qualitative results on the frames shown in the leftmost column with hand-annotated freespace boundary. In the next columns, from left to right:
Disparity Stixel World baseline; our result with offline training on manual labels; our result with online tuning. Colors indicate the freespace detections
true positives (green), false negatives (blue) and false positives (red). Best viewed in color.

the feasibility of self-supervised learning, as relying on weak
labels does not hamper the performance of our system. Self-
supervised training on more data did not lead to a clear
improvement of our results, as illustrated by the graph.
This may show that our network is too small to exploit the
additional data, or that the correlation within the new samples
is too high to be informative. Regarding our online training
strategies, Figure 3 shows that these outperform the offline
training by 5%, both for Fmax and AP .

An important conclusion of the experiments is that the
contribution of online-tuned training is most significant in
the speed of convergence, and less relevant for the final result
after convergence. Specifically, the tuned models outperform
the other methods already after 100 iterations of training
(which takes less than half a second on a GeForce GTX970
graphics card), whereas models trained from scratch need at
least 500 iterations to match the offline FCN and more than
2000 to exceed the Stixel World algorithms.

The results of the misalignment of the training sequences
and the test frames with the online-trained FCNs are provided
in Table I. It is clear that the misalignment has a negative
impact on the performance of the online training approach,
as was expected. The scores drop even below that of the
models that are trained offline, also for the FCNs that were
initialized with offline pre-trained nets. As the online FCNs
outperform all other methods when their training sequence
and test frame are aligned, this validates our claim that the
online training is giving the system flexibility to adapt to
new circumstances, and that over-tuning can be exploited
beneficially in the context of free-space detection for ADAS.
In conclusion, we exploit the fact that our adaptive strategy is
not required to generalize to a large amount of traffic scenes
with a single detector. Hence, the detector can -and should-
be ’over-tuned’ on currently relevant data. In turn, this allows
for a small FCN whose training converges fast enough to
facilitate real-time deployment in the near future.

TABLE I
RESULTS OF ONLINE TRAINING ON DIFFERENT TRAINING SEQUENCES.

offline trained online (scratch) tuned online (off-self)
(man.) normal +1/-1 random normal +1/-1 rand.

Fmax 0.87 0.91 0.83 0.79 0.92 0.83 0.80
AP 0.93 0.98 0.91 0.84 0.98 0.92 0.86
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